Nykurtala
Nykurtala[1] er hugtak í línulegri algebru sem stækkar rauntöluásinn með því að bæta við stakinu ε sem er þeim eiginleika gætt að ε2 = 0 — það er ε er núllvalda. Sérhver nykurtala z er á forminu z = a + bε þar sem a og b eru ótvírætt ákvarðaðar rauntölur.
Hverja nykurtölu má tákna sem ferningsfylki þar sem nykurhlutinn ε er núllvalda fylki og a + bε er ferningsfylki þar sem a er raunhluti nykurtölunnar og b nykurhluti hennar:
- .
Summa og margfeldi nykurtalna eru svo reiknuð með venjulegum fylkjaaðgerðum þar sem báðar aðgerðir eru víxlnar og tengnar.
Afleiður
[breyta | breyta frumkóða]Nykurtölur má nýta við forritun deildunar þar sem þær eru settar inn í margliðu með rauntölustuðla (raunmargliðu): P(x) = p0+p1x+p2x2+...+pnxn. Þegar nykurhluta er bætt við inntakið kemur út P(a+bε) = P(a)+bP ′(a)ε, þar sem P′ er afleiða fallsins P.
Tengt efni
[breyta | breyta frumkóða]Tilvísanir
[breyta | breyta frumkóða]- ↑ Orðasafn Íslenska Stærðfræðifélagsins Geymt 7 mars 2011 í Wayback Machine gefur upp dual sem ‚nykur-‘, engar heimildir eru gefnar fyrir hugtakinu ‚nykurtala‘ sem þýðing á enska heitinu dual number. Orðið er sambærilegt öðrum hugtökum innan stærðfræðinnar eins og ‚nykurrúm‘ (dual space) og ‚nykurvirki‘ (dual operator).