Fara í innihald

Undirstöðusetning algebrunnar

Úr Wikipediu, frjálsa alfræðiritinu

Undirstöðusetning algebrunnar er mikilvæg stærðfræðisetning, segir að kroppur tvinntalna er algebrulega lokaður. Fjöldi stærðfræðinga reyndi að sanna regluna á 18. öld, meðal annarra Euler og Lagrange en fyrstu fullkomnu sönnunina veitti Frakkinn Jean-Robert Argand árið 1806. Árið 1799 hafði Þjóðverjinn Carl Friedrich Gauss samið sönnun, sem síðar kom í ljós að var götótt. Setningin er, líkt og nafnið ber með sér, mikilvæg niðurstaða í fleiri en einni grein stærðfræðinnar, stærðfræðigreiningu og algebru svo nokkuð sé nefnt.

Framsetning

[breyta | breyta frumkóða]

Látum vera margliðu yfir tvinntalnasléttuna með tvinntalnafastastuðlum og af stigi . Þá hefur minnst eina núllstöð. Þ.e. ef þar sem er tvinntala og stuðlarnir eru tvinntölur þá er til a.m.k. eitt gildi fyrir svo .

  Þessi stærðfræðigrein er stubbur. Þú getur hjálpað til með því að bæta við greinina.