Úr Wikipediu, frjálsa alfræðiritinu
Stökkva á: flakk, leita
Litla π
Vegna tæknilegra takmarkana er titillinn á grein þessari rangur. Rétti titillinn er: π
Sjá aðgreiningarsíðuna fyrir yfirlit yfir aðrar merkingar „Pí“

, táknað með gríska bókstafnum π („pí“), er óræður, stærðfræðilegur fasti, skilgreindur sem hlutfallið milli ummáls og þvermáls hrings í Evklíðsku rúmi. Talan π er jöfn flatarmáli einingarhrings (hringur með geisla 1), og er ennfremur jöfn hálfu ummáli hans. Flest nútímarit skilgreina π á fágaðan máta með hornaföllum, t.d. sem minnsta mögulega jákvæða x þar sem sin(x) = 0, eða sem tvöfalt minnsta mögulega jákvæða x þar sem cos(x) = 0. Allar ofangreindu skilgreiningarnar eru jafngildar.

π er einnig þekkt sem fasti Arkímedesar (sem ekki ætti að rugla við Tölu Arkímedesar), fasti Ludolphs eða tala Ludolphs og kemur einnig mikið við sögu í eðlisfræði og stjörnufræði.

Saga π[breyta | breyta frumkóða]

Notkun táknsins „π“ fyrir tölu Arkímedesar kom fyrst fram árið 1706 þegar William Jones gaf út bókina A New Introduction to Mathematics, þó að sama tákn hafi áður verið notað til þess að tákna ummál hrings. Táknið varð að staðli þegar Leonhard Euler tók það upp. Í báðum tilfellum er π fyrsti stafurinn í gríska orðinu περιμετροσ (perimetros), sem þýðir ummál.

Ágrip af sögu π[breyta | breyta frumkóða]

Ummál hrings með þvermál=1 er π.
  • 20. öld fyrir krist: Babýloníumenn nota .
  • 20. öld fyrir krist: Egyptar nota .
  • 12. öld fyrir krist: Kínverjar nota .
  • 434 fyrir krist: Anaxagóras reynir að búa til ferning hrings með reglustiku og sirkli.
  • 3. öld fyrir krist: Arkímedes finnur út að , og að .
  • 20 fyrir krist: Vitrúvíus notar
  • 2. öld: Ptolemaíos notar .
  • 3. öld: Chang Hong notar , Wang Fau notar , og Liu Hui notar .
  • 5. öld: Zǔ Chōngzhī ákvarðar .
  • 6. öld: Aryabhata og Brahmagupta í Indlandi nota og .
  • 9. öld: Al-Khwarizmi notast við .
  • 1220: Fibonacci notar gildið .
  • 1430: Al-Kashi reiknar 14 aukastafi .
  • 1573: Valenthus Otho reiknar 6 aukastafi .
  • 1593: François Vieta reiknar 9 aukastafi , og Hollendingurinn Adriaen van Roomen reiknar 15 aukastafi.
  • 1596: Ludolph van Ceulen reiknar 35 aukastafi .
  • 1665: Isaac Newton reiknar 16 aukastafi.
  • 1699: Sharp, 71 aukastafur.
  • 1700: Seki Kowa, 10 aukastafir.
  • 1706: Machin, 100 aukastafir.
  • 1719: De Lagny reiknar 127 aukastafi, af þeim eru 112 réttir.
  • 1723: Takebe reiknar 41 aukastaf.
  • 1730: Kamata, 25 aukastafir.
  • 1734: Euler gerir táknið π vinsælt.
  • 1739: Matsunaga, 50 aukastafir.
  • 1761: Johann Heinrich Lambert sannar að óræð tala.
  • 1775: Euler bendir á möguleikann að torræð tala.
  • 1794: von Vega reiknar 140 aukastafi. Af þeim eru 136 réttir.
  • 1794: Adrien-Marie Legendre sýnir að bæði og séu óræðar, og bendir á möguleikann að sé torræð.
  • 1824: Rutherford reiknar 208 aukastafi, þar af eru 152 réttir.
  • 1844: Strassnitzky reiknar 200 aukastafi.
  • 1847: Thomas Clausen, 248 aukastafir.
  • 1853: Lehmann, 261 aukastafur.
  • 1853: Rutherford, 440 aukastafir.
  • 1855: Richter, 500 aukastafir.
  • 1874: Shanks, 707 aukastafir. Þar af eru 527 réttir.
  • 1882: Ferdinand Lindemann sýnir að pí sé torræð tala.

Pí með fyrstu 63 aukastöfunum (runa A000796 í OEIS) er:

3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 592...

Tengt efni[breyta | breyta frumkóða]